$$ H_{0}(\xi_{1}) = 1 $$
$$ H_{0}(\xi_{2}) = 1 $$
$$ H_{1}(\xi_{1}) = \xi_{1} $$
$$ H_{1}(\xi_{2}) = \xi_{1} $$
$$ \psi_{0}(\xi_{1}, \xi_{2}) = H_{0}(\xi_{1})H_{0}(\xi_{2}) = 1 $$
$$ \psi_{1}(\xi_{1}, \xi_{2}) = H_{1}(\xi_{1})H_{0}(\xi_{2}) = \xi_{1} $$
$$ \psi_{2}(\xi_{1}, \xi_{2}) = H_{0}(\xi_{1})H_{1}(\xi_{2}) = \xi_{2} $$
On calcule une troncature de dimension d
et d'ordre p
en suivant la formule suivante (avec p = 3
)
$$ f_{p}(\xi_{1}, \xi_{2}, \xi_{3}) = \sum_{k = 0}^{P}\alpha_{k}\psi_{k}(\xi_{1}, \xi_{2}, \xi_{3}) $$
$$ P+1 = \frac{(p+d)!}{p!d!} $$
$$ \alpha_{k} = MC $$